Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun

Examen : BT Ind Session : 20/18 Spécialité : -IS Epreuve : Mathématiques Durée : 4 H Coef : 4

1 pt

0,5 pt

1 pt

0,5 pt

1,5 pt

L'épreuve comporte deux exercices et un problème répartis sur deux pages.

Exercice 1: (6 points)

Le plan (P) est rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$. On considère la courbe (γ) d'équation : $x^2 - y^2 = -1$.

1. Déterminer la nature et les éléments caractéristiques (demi distance focale, excentricité, sommets, foyers, axe focal, directrices et asymptotes) de (γ). 2 pts

2. Construire (
$$\gamma$$
). 1 pt

3. Soit α un réel appartenant à l'intervalle $-\frac{\pi}{2}; \frac{\pi}{2}$.

On considère l'équation (E) : $-z^2 cos^2 \alpha + zsin^2 \alpha - 2 + cos^2 \alpha = 0$.

- a) Montrei que le discriminant de l'équation (E) est égal à $-4cos^2\alpha$. 0,5 pt
- b) Résoucte dans C l'équation (E).
- 4. Soit M l'image dans le plan complexe de la solution de l'équation (E) dont la partie imaginaire est positive.
 - a) Vérifier que M est un point de (γ) .
 - b) Déterminer et représenter sur le même graphique la partie (γ) de (γ) décrite par M lorsque α décrit l'intervalle $\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$. 1 pt

Exercice 2: (4 points)

On considère le polynôme $p(x) = x^3 + 4$

- Déterminer p(1). 1. 0,5 pt Résoudre dans IR l'équation p() ≥ 0 K 2. 1 pt En déduire dans IR la résolution de l'équation : З.
- $ln^3x + 4ln^2x = -lnx + 6.$ 0,75 pt Résoudre dans IR l'inéquation p(x) > 0. 4. 0,75 pt
- En déduire dans IR l'ensemble solutions de l'inéquation 5. $ln^3x + 4ln^2x + lnx - 6 > 0.$

Problème : (10 points)

Le plan est rapporté à un repère orthogonal $(0, \vec{\iota}, \vec{j})$ (unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées).

Partie A

- On considère l'équation différentielle (E) : y'' 2y' + y = 0.
 - 1. Résoudre sur IR l'équation différentielle (E).
 - 2. Soit g la solution de (E) telle que :
 - La courbe représentative de g passe par le point I(0 ;-4)
 - La tangente à la courbe représentative de g au point I soit perpendiculaire à la droite d'équation $y = \frac{1}{2}x - 1$.

Déterminer explicitement la fonction g.

Page 1 sur 2

www.orniformation.com

Partie B

Solient f la fonction définie par $f(x) = (2x - 4)e^x$ et (C) sa courbe représentative

1. a) Déterminer les limites de f en $-\infty$ et en $+\infty$.

1 pt b) Calculer la limite de $\left(\frac{2x-4}{x}\right)e^x$ en $+\infty$ et interpréter graphiquement le résultat.1 pt

1,5 pt

1 pt

0,5 pt

0,75 pt

Calculer la dérivée f' de f et étudier les variations de f.

Dresser le tableau de variations de f.

4. Construire (C) (on prendra $e \cong 2,7$).

1,5 pt 5. On note $A(\alpha)$ l'aire du domaine du plan limité par l'axe des ordonnées , l'axe des abscisses ,la courbe (C) et la droite d'équation $x = \alpha$ où α est un réel strictement négatif. Soit F la fonction définie sur IR par $F(x) = (2x - 6)e^x$.

a) Montrer que la fonctio	n F es	t une primitive de f	eur ID	0.75
h) Dótanning 2		e ano primitive de j	Sur IIX.	0,75 pt

b) Déterminer en cm², A (α) en fonction de α .

la. Mu Othitrotingtions Co c) Déterminer la limite de A (α) lorsque α tend vers $-\infty$.

Page 2 sur 2