OFFICE DU BACCALAURÉAT DU CAMEROUN									
BACCALAURÉAT	Spécialité : F7 – Cl	SESSION: 2018							
ÉPREUVE DE : PHYSIQUE	DURÉE : 3 HEURES	Coefficient : 3							

I Connaissances essentielles du cours / 4 points

1- Citer deux échelles de température.

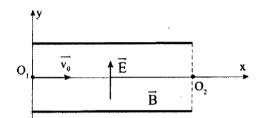
0,5x2=1pt

2- Écrire les expressions de la force de Lorentz et de l'énergie électrique d'un condensateur.

 $0.5 \times 2 = 1pt$

3- Nommer dans le système international les unités de la puissance active et de la puissance apparente.

 $0.5 \times 2 = 1pt$


4- Définir le mouvement vibratoire et la longueur d'onde.

0.5x2=1pt

Il Applications directes du cours/ 4 points

1- Mouvement d'une particule chargée dans \overrightarrow{E} et \overrightarrow{B}

Un ion Li[†] de vitesse $\overrightarrow{v_0}$ pénètre en O_1 dans une zone où règne simultanément un champ électrique uniforme \overrightarrow{E} et un champ magnétique uniforme \overrightarrow{B} voir schéma cicontre. L'action de la pesanteur est négligeable.

1.1- Reproduire le schéma et indiquer les signes des charges de la plaque supérieure et de la plaque inférieure.

1pt

1.2- L'ion Li⁺ sort de cette zone en O_2 sans subir de déviation. La relation qui existe entre les valeurs E, B et v_o est : $E = v_o$.B. Sachant que $v_o = 2 \times 10^7$ m/s et $E = 10^7$ V.m⁻¹, sur le schéma reproduit, représenter \overrightarrow{B} (direction, sens) et calculer son intensité.

1,5pt

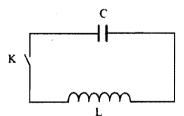
2- Solide en rotation autour d'un axe fixe

Une roue de masse m = 20 kg est montée sur une machine. On fait tourner la roue autour d'un axe fixe (Δ) passant par son centre à la vitesse angulaire ω = 80 π rad.s⁻¹. La roue sera assimilée à un disque de rayon R = 30 cm. Calculer :

2.1- Le moment d'inertie
$$J_{\Delta} = \frac{1}{2} mR^2$$
 de la roue.

0,5pt

2.2- Le moment cinétique σ de la roue si $J_{\Delta} = 0.9 \text{ kg.m}^2$.


1pt

III Utilisation des acquis / 6 points

1- Étude du dipôle L, C

On réalise le circuit de la figure ci-contre :

Le condensateur de capacité C est initialement chargé et est monté en série avec une bobine non résistive d'inductance L. On ferme l'interrupteur K.

- 1.1- Établir l'équation différentielle liant la charge Q du condensateur à sa dérivée seconde par rapport au temps.
- 1.2- Donner l'expression de la période propre T₀ des oscillations libres ce circuit.

0,5pt

2- Addition des grandeurs sinusoïdales de même fréquence

 $Y_1 = 3\sin 2\pi ft$ en (cm) et $Y_2 = 4\sin (2\pi ft + \pi/2)$ en (cm) sont les équations horaires de deux mouvements vibratoires. Déterminer par la méthode de Fresnel l'équation horaire du mouvement résultant $Y = Y_1 + Y_2$.

1,5pt

1pt

3- Ondes stationnaires

Dans une expérience de la corde de Melde où les deux extrémités de la corde sont des nœuds,

on a:

✓ longueur utile de la corde :

l = 2.4 m

✓ masse de la corde :

m = 1.5 g

✓ tension de la corde :

F = 1N;

✓ fréquence du diapason :

f = 50 Hz

3.1- Calculer la célérité v des ondes le long de la corde.

1pt

3.2. Calculer la longueur d'onde λ de l'onde qui se propage le long de la corde.

1pt

3.3- Un système d'ondes stationnaires s'établit le long de cette corde. Calculer n le nombre de fuseaux.

1pt

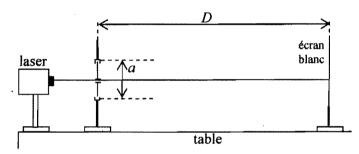
IV Exercice à caractère expérimental / 6 points

Objectif:

Étudier l'influence des divers facteurs dont dépend l'interfrange

Matériel utilisé :

Une diode - laser


Trois paires de fentes fines et parallèles montées sur diapositive (écartement des fentes :

$$a_1 = 700 \ \mu m$$
 ; $a_2 = 350 \ \mu m$; $a_3 = 175 \ \mu m$)

Un écran blanc

Protocole expérimental

On mesure la valeur de l'interfrange en faisant successivement varier la distance D des fentes à l'écran et l'écartement a des fentes. Le tableau suivant est obtenu :

	D(m)	1	2	3	4	5
$a_1 = 700 \mu m$	i (10 ⁻³ m)	1,0	1,9	2,9	3,8	4,7
$a_2 = 350 \mu m$	i (10 ⁻³ m)	2,0	3,9	5,8	7,6	9,6
$a_3 = 175 \mu m$	i (10 ⁻³ m)	4,0	7,7	11,7	15,9	19,3

1- Tracer dans le même repère le graphe i = f(D) pour différentes valeurs de a.

3pt

Échelle:

D: 1 cm pour 1 m

 $i: 1 \text{ cm pour } 2 \times 10^{-3} \text{ m}$

2- A partir des résultats du tableau et du graphe : énoncer une relation simple entre i et D, puis entre i et a . $0.5 \times 2 = 1$ pt

3- Pour une mesure de l'écartement a₂ = 350 μm :

3.1- Déterminer la pente de la droite k.

1pt

3.2- Déduire la longueur d'onde λ de la lumière utilisée si $k = 2.10^{-3}$.

1pt

ANNEXE	À	REMET	TRE	AVEC	LA	COPIE
--------	---	--------------	-----	-------------	----	-------

N° ANONYMAT	:	
-------------	---	--

Aucune marque distinctive n'est admise

													HH						
																		Ш	
													HH						
						Ш			Ш										
									HH										
										H									
														肼					
																			###
					甜甜										111-4				
					HH								ЩЩ						
																		Ш	
									Ш										
	####					Ш													
						Ш													
						Ш													
																	##		
												 	1 1 1 1 1 1 1						
					The strike	1111											###		
						H					11111	111111	1 4-11 4-1	14444		7444444	++++++++		
						11111		7.5 H											
						Щ				ШН							###		
																			Hill
									拼掛	HH							圳		
						H													
								Ш											
		444				771													
Hilbir] 	HHAH	94444	田田井井	-1144	HII	HUILI	H114H	HH	HH	HHH	++-[7]	141711	11 (III)	шшш	Httilli	нин	1111	-1