dinistère des Enseignements Secondaires Examen: B

Office du baccalauréat du Cameroun

Examen : Baccalauréat

Session: 2018

Séries/Spécialités: F₁-F₂-F₃-F₄-F₅-F₇-F₈-CI

Épreuve : MATHEMATIQUES

Durée : 3 heures Coefficient : 3

Cette épreuve est constituée de deux exercices et d'un problème étalés sur deux pages que chaque candidat essayera de tout traiter.

Exercice 1: (5 points)

La conductivité molaire y (en S. mol^{-1}/m^3) d'une solution de chlorure de potassium dépend de sa concentration x (en mol/dm^3). Une série de mesures effectuées a donné les résultats suivants :

Valeurs x_i de x	0,045	0,071	0,126	0,141	0,155
Valeurs y de y	0,0145	0,0135	0,0130	0,0125	0,0120

1) - Représenter le nuage de points associé à cette série statistique : prendre 1 cm pour $10^{-2} \, mol/dml$ en abscisses et $10^{-3} S. \, mol^{-1}/m^3$ en ordonnées.

Un ajustement affine peut-il être justifié ?

(2pts)

Donner une équation de la droite de régression de y en x.

(2pts)

(Pour les calculs, on prendra des arrondis d'ordre 6).

3) Donner une estimation de la concentration de la solution correspondant à une conductivité molaire de 14.8×10^{-3} $\text{S. mol}^{-1}/m^3$. (1pt)

Exercice 2: (4 points)

Le plan complexe est muni d'un repère orthonormé usuel $(0, \overline{e_1}, \overline{e_2})$. A et B sont des points d'affixes $z_A = 2i$ et $z_B = 4 + 2i$.

1) Faire une figure avec les points O, A, B, F et D tels que $\overrightarrow{OA} = \overrightarrow{BD}$ et F milieu de [AB]. On précisera les coordonnées du point D.

2) Soit (Σ) le lieu des points M du plan situés à égale distance de F et de l'axe des abscisses.

Préciser la nature de (Σ) .

Déterminer graphiquement trois points de (Σ) à coordonnées entières et construire (Σ) sur la figure précédente. (1,5pt)

3) Résoudre dans \mathbb{C} l'équation $z^2 - (4+4i)z + (2i)(4+2i) = 0$. (1,25pt)

Problème: (11 points)

Partie A: (4 points)

- 1) Déterminer la solution f de l'équation différentielle y' = yln(0,6) dont la courbe (\mathcal{C}_f) dans un repère passe par le point de coordonnées $\binom{1}{0,6}$. (1pt)
- 2) Résoudre dans IR, l'inéquation (0,6)* < 10⁻³. (0,5pt)
 3) Un fabriquant de plaques isolantes phoniques indique que la pose d'une couche de

ses plaques absorbe 40 % de l'intensité du son exprimée en décibels(db). Soit I_0 l'intensité initiale non nulle du son émis dans une salle par une source et I_n l'intensité sonore dans la salle voisine après la pose de n couches de ces plaques. n étant

un entier naturel non nul.

	a) Déterminer I_1 en fonction de I_0 . b) Démontrer que $I_n=0.6\ I_{n-1}$ et en déduire une expression de I_n en fonction	(0,5pt) n de n et (1pt)
	de I_0 . c) À partir de combien de couches de ces plaques posées, est-on sûr que sonore dans la salle voisine est inférieure au millième de l'intensité sonore initiale (Noter que I_0 est strictement positif).	l'intensité
	Partie B: (7points)	pione d
	Soit g une fonction de IR vers IR avec $g(x) = -x\ln(0.6) + (0.6)^x$.)1
	1) Démontrer que pour x appartenant à IR , on a $g'(x) = \ln(0.6) [-1 + e^{x \ln(0.6)}]$	(0,5pt)
	2) a) Démontrer que $\lim_{x \to -\infty} g(x) = +\infty$.	(0,25pt)
	b) Déterminer la limite de g en $+\infty$.	(0,25pt)
		(4nt)
	3) Dresser le rableau de variations de g .	(1pt)
	4) Calculer $\lim_{x\to +} \left[g(x) + x \ln(0,6)\right]$ et $\lim_{x\to -\infty} \frac{g(x)}{x}$.	(4-4)
ĺ	Conclure	(1pt)
	0) 114001 4400 30111 12 054150 (09) 40 9); t̄ , j̄). On (1,5pt)
9	prendra 2 cm pour unité.	les droites
	6) Calculer l'aire \mathcal{A} en cm^2 de la portion du plan délimitée par (\mathcal{C}_g) et l d'équations $y = -x\ln(0.6)$; $x = 0$ et $x = 2$.	(1pt)
	7) Une entreprise produit des plaques isolantes phoniques. Une étude a	permis de
	constater que si x est le nombre d'années après la création de cette entreprise	, alors son
	capital (en dizaines de millions de francs) est $h(x) = g(x-2)$.	was acts
	a) Dresser le tableau de variation de (On vérifiera que h n'est croissan	(0,75pt)
	l'intervalle [2; +∞[). b) Donner le capital initial de cette entreprise (à 5 francs près) et indiquer la	
	récession où le capital n'a cessé de baisser.	(0,75pt)
	`.O ₂	
	(1910, F)	J. Pgare.