1	OFFICED	UBAGEAL	AURÉATDUGAMEROUN		
Examon	BACCALAURÉAT/BT	Spécialités	F1-F4 - MA-MEM-MF/CM-IS- BIJGT-MEB-IB-EF-PA-PV-TP MISE	Session	20.1.8
Epreuve	SCIENCES PHYSIQUES	Durée	3日	Coefficient	03

CHIMIE : 6 Points

Les hydrocarbures insaturés / 2points 1-

La polymérisation du propène CH₃-CH=CH₂ aboutit au polypropylène:

1-1-Définir réaction de polymérisation.

1-2- Écrire l'équation-bilan de la réaction.

1-3- Calculer l'indice de polymérisation n sachant que la masse molaire du polymère est 84000 g.mol⁻¹. On donne : M(C)=12g/mol ; M(H)=1g/mol. 1pt

2- Composés oxygénés / 3pt

On dispose d'un alcool de formule brute C₃H₈O.

2-1- Ecrire les deux formules développées des alcools correspondant à C3H8O. 1pt 2-2- A est un isomère de cet alcool. Son oxydation ménagée aboutit à un composé B qui est sans action avec le réactif de schiff. 1pt

2-2-1-Définir oxydation ménagée

2-2-2-Donner la formule semi-développée de B et son nom dans la nomenclature officielle.

3- Engrais / 1pt

Le nitrate d'ammonium (NHANO2) est utilisé pour améliorer les cultures de maïs. Donner l'élément fertilisant présent dans cet engrais et son rôle pour la plante 1pt

PHYSIQUE :14 points Application Directe du Cours :4 points

1- Ondes mécanique : 2pt

Une corde élastique est fixée à l'extrémité d'un vibreur de fréquence N= 50Hz.

- 1-1-Calculer la longueur d'onde λ sachant què les vibrations se propagent à la célérité c = 10 m / s.
- 1-2-Comparer les mouvements (dire s'ils vibrent en obase ou en opposition de phase) de deux points de la corde situés à 40 cm l'un de l'autre. 1pt

2-Circuit RLC: 2pt

Un circuit R.L.C. comprenant en série un condensateur de capacité C et une bobine de résistance R et d'inductance L est alimenté par un générateur delivrant une tension sinusoïdale de valeur de fréquence variable f.

- 2-1-Ecrire l'expression littérale de l'impédance Z du circuit en fonction de R, L, f et C.

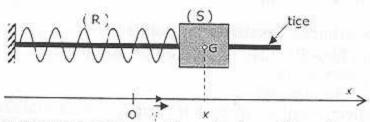
1pt

0,5pt

0,5pt

1pt

2-2-Donner une condition pour laquelle ce circuit soit en résonnance.


UTILISATIONS DES ACQUIS 5pts

1. Oscillateur mécanique : 2,5pts

Un ressort (R) de masse négligeable, à spires non jointives, parfaitement élastique, de constante de raideur k, est accroché par l'une de ses extrémités à un solide (S) de masse

MINESEC/OBC BACCALAUREAT/BT/ SCIENCES PHYSIQUES F1-F4 - MA-MEM-MF/CM-IS-GT-MEB BIJO IB-EF-PA-PV-TP MISE SESSION 2.DAS Page 1 sur 3

m = 100 g, susceptible Weyse deplace sans frottement sur le plan horizontal. (Voir figure : ci-dessous). Or utilise un axe horizontal Ox, orienté par le vecteur unitaire i et on repère lé position du centre d'inertie G du solide par son abscisse x sur cet axe.

1-1-, Reproduire sur la copie le schéma du dispositif expérimental ci-dessus puis représenter et nommer les forces s'exerçant sur le solide (S) sachant que le ressort est a longé à l'instant présenté. 0,75 pt

1-2-En appliquant la deuxième loi de Newton au solide (S), établir l'équation différentielle régissant le mouvement de son centre d'inertie G. 1pt 1-3-Déterminer la période T des oscillations sachant que k= 5N/m. 0,75pt

2- Effet photoelectrique / 2,5 points

Le travail d'extraction d'un électron du Zirc est $W_s = 3,3 \text{ eV}$.	
2-1-Définir : effet photoèlectrique.	1 pt
2-2 -Calculer la longueur d'onde seuil λ_s du Zinc.	1pt
2-3 - On éclaire le zinc par une radiation UV de longueur d'onde $\lambda = 0,25 \mu\text{m}$.	
Déterminer l'énergie cinétique maximale Ec max de sortie des électrons.	0,5pt

EXERCICE A CARACTERE EXPERIMENTAL : 5 Points Détermination de la période radioactive du plomb

Le Plomb ²¹⁰₈₂Pb est émetteur β . On considère un échantillon contenant No = 10¹⁰ noyaux de ce radioélément ²¹⁰₈₂Pb à l'instant t 0. Le nombre de noyaux N restant à l'instant t'est donné par le tableau ci-dessous :

t(min)	10	20	30	40	50	60	75	90	105	120
$N(x10^{9})$	7,7	6,1	4,7	3,6	2,8	2,1	1,4	0,92	0,6	0,4

1pt

5pt

1pt

1- Définir période radioactive.

- 2- Ecrire l'équation de la désintégration radioactive du Plomb 210 Pb sachant qu'il se forme le bismuth Bi. 1,5pt
- 3-Tracer le graphe N = f(t) sur le papier millimétré de la page 3 sur 3 du documer à remettre avec la copie.

Echelle : En abscisse :1 cm pour 10 min ; En ordonnée :1 cm pour 109 ncyaux. 4-Déterminer graphiquement la période radioactive T du Plomb.

Additional and a state of the second se