OFFICE DU BACCALAUREAT DU CAMEROUN					
Examen	Baccalauréat	Spécialité	F ₂ -F ₃ -F ₅	Session	2018
Épreuve	Sciences physiques	Durée	3 heures	Coefficient	3
CHIMIE / 6 Po 1. Soit C ₂ H ₍₆₋	pints x) Cl _x le produit principal d'une	réaction étudiée en	classe.		
1.1. Écrire la f	formule brute de l'hydrocarbur	e utilisé.	. 2		0,5
1.2. S'agit-il d'une réaction de substitution ou d'addition ? Justifier votre réponse.					0,5
1-3. Pour x=1, écrire l'équation-bilan de la réaction.					0,5
2. L'hydratatio	n de l'acétylène (éthyne).				
2.1. Écrire l'éc	quation-bilan de la réaction de	l'eau sur l'éthyne (0	C ₂ H ₂) et nommer le _l	oroduit obtenu.	11
2.2. À partir de	e V ₁ = 100 L d'éthyne gazeux,	déterminer la mass	se m du produit si le	rendement de	
la réaction vau	ut 80%.				0,75
On donne : V	/₀=24 L₂(volume molaire); C	(12 g/mol) ; O (16 g	g/mol) ; H (1 g/mol)		
	d'un ester/E conduit à <u>l'éthan</u>				
3.1. Donner le nom de la <u>réaction concurrente</u> de l'hydrolyse.					0,25
3.2. Écrire la formule semi-développée de l'ester E.					0,5
4. On dose un	acide carboxylique de formul	e R – COOH et de i	masse m = 0,237 g	par une solution de	
soude (Na+, H	IO·) de concentration C _b = 0,2	mol/L. Au point équ	ivalent, on a versé e	exactement un volum	ie
V _{bE} = 0,016 L		\			
4.1. Déterminer la masse moléculaire molaire M de cet acide carboxylique.					0,5
4.2. En déduire la formule brute de cet acide carboxylique à chaîne carbonée saturée.					0,5
5. Les engrai	s.		5		
Soit 20 - 14 -	20, la formule d'un engrais co	omposé, de masse i	50Kg.		
5.1. L'engrais en question est-il ternaire ou binaire ?					0,25
5.2. Déterminer la masse m _N de l'élément fertilisant azote.					0,75
PHYSIQU	E / 14 points	of production of the second			
APPLICATIO	N DIRECTE DU COURS : 4 P	oints		•	
1. Au vue du	premier principe de la thermo	odynamique, détern	niner la variation de	l'énergie interne ΔU	J d'un système qui
une énergie Q = 2 500 J au milieu extérieur, en recevant un travail W = 3 500 J des forces extérieures.					neo à mon au rosa
ETUDE D'UN CIRCUIT (R.C)					endar dolotta) elekt
2. Un dipôle (l	R,C) est alimenté par une tens	sion constante U = 1	16 V.		igës oda i dë Tajas. Smrtam makazare i
2.1. Déterminer la constante de temps T _c de ce dipôle.					0,5
2.2. En déduire la tension électrique de ce condensateur à l'instant t ₁ = 30 s.					0,5
On doni	ne: $R = 6000 \Omega$; $C = 5.10^3 F$				
MOUVEMENT	TS VIBRATOIRES				
3. L'équation horaire d'un pendule élastique qui travaille en translation rectiligne sinusoïdale est :					
$x = 2.10^{-3}\sin(5.t + 1.57)$ où x (en mètre) et t (en seconde).					
3.1. Donner l'expression de son équation différentielle.					1

3.2. Le solide ponctuel relié à ce ressort a une masse m = 0,1 kg. Déterminer la constante de raideur K de ce ressort et l'accélération \ddot{x}_0 du système à l'instant initial $t_0 = 0$ s.

1pt

UTILISATION DES ACQUIS: 5 Points

 Le système (S₁, poulie, S₂, fil) est en mouvement uniformément accéléré sous l'action du solide S₂, (voir figure 1). La poulie est de masse négligeable.

Données: S1 est un solide de masse m1 = 20 g; S2 est un solide de masse m2 = 70 g; Sina = 0,5 et g = 10 N/kg; l'accélération a₁ de S₁ est égale à l'accélération a₂ de S₂.

1.1. En s'appuyant sur le sens du mouvement des solides, donner:

 1.1.1. L'expression de la tension T₁ en fonction de m₁, g, sinα et a₁ (accélération du système); 0,5pt

0,5pt 1.1.2. L'expression de la tension T2 en fonction de m2, g, sinc et a1;

0,5pt 1.2. Déduire l'accélération a₁ de l'égalité T₁ = T₂ = T'₂ et la calculer.

ONDES PROGRESSIVES

2. L'extrémité S (source) d'une lame vibrante, reliée à une corde, est animée d'un mouvement transversal rectiligne sinusoïdal d'élongation $Y_s = 5.10^{-2}$ Sin (200 π .t) avec t (en seconde) et Y_s (en mètre).

2.1. Cette corde de masse linéique $\mu=0.2~kg/m$ est tendue par une force d'intensité.

0,5pt F = 20 N. Déterminer la longueur d'onde à de l'onde progressive.

2.2. L'onde traverse deux points M et N de la corde, distants d =0,25 m. Comparer l'état vibratoire 0,5pt de M et N.

EFFET PHOTOELECTRIQUE

3. La longueur d'onde seuil d'un métal est $\lambda_0 = 0.7 \times 10^{-6}$ pc

0,5pt 3.1. Calculer l'énergie d'extraction E₀ d'un photoélectron.

3.2. Un faisceau incident de puissance P = 15.10-4 W et de longueur d'onde λ = 0,45.10-6 m extrait 4,5. 10-13 électrons par seconde. Déterminer le rendement quantique de la cellule. 1pt

On donne: $c = 3.10^8$ m/s; $h = 6,63.10^{-34}$ J.s.

MOUVEMENT D'UNE PARTICULE DANS UN CHAMP MAGNETIQUE

4. Un champ magnétique uniforme \vec{B} agit sur un électron de vitesse constante $V_0 = 2.10^7$ m/s. Le mouvement engendré de l'électron est circulaire dans un plan horizontal. Déterminer le rayon R de la trajectoire 1pt

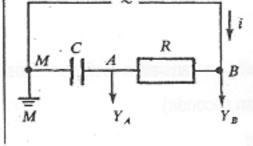
On donne : $m_{\tilde{e}} = 9,1.10^{-31}$ kg $|e| = q = 1,6.10^{-19}$ C, $B = 6.10^{-5}$ T

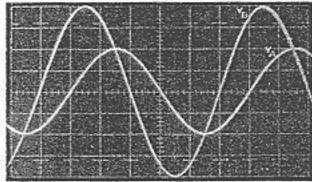
EXERCICE A CARACTERE EXPERIMENTAL: 5 points

On vous propose le circuit électrique et l'oscillogramme associé ci-dessous

1pt 1. Donner un nom à ce circuit et justifier la présence de deux courbes. 1pt


Quelle tension représente les sorties Y_A et Y_B.


3. À partir de l'oscillogramme, déterminer :


 3.1. La tension maximale aux bornes du condensateur et aux bornes du générateur si 1cm → 1V. 1pt 1pt

3.2. La période T et la différence de phase Δφ entre les deux tensions si 1 cm → 10-3 s. 1pt

3.3. En déduire la différence de phase entre le courant i et la tension u aux bornes de l'ensemble.

