Ministère des Enseignements Secondaires Office du baccalauréat du Cameroun

Examen : Baccalauréat

Session: 2018

Séries/Spécialités: F1-F2-F3-F4-F5-F7-F8-CI

Épreuve : MATHEMATIQUES

Durée : 3 heures Coefficient : 3

Cette épreuve est constituée de deux exercices et d'un problème étalés sur deux pages que chaque candidat essayera de tout traiter.

Exercice 1: (5 points)

La conductivité molaire y (en S. mol^{-1}/m^3) d'une solution de chlorure de potassium dépend de sa concentration x (en mol/dm^3). Une série de mesures effectuées a donné les résultats suivants :

			1 27 12		
Valeurs x_i de x	0,045	0,071	0,126	0,141	0,155
Valeurs Ni de y	0,0145	0,0135	0,0130	0,0125	0,0120

1) - Représenter le nuage de points associé à cette série statistique : prendre 1 cm pour $10^{-2} \, mol/dm^3$ et abscisses et $10^{-3} S. \, mol^{-1}/m^3$ en ordonnées.

Un ajustement affine peut-il être justifié ?

(2pts)

2) Donner une équation de la droite de régression de y en x.

(2pts)

(Pour les calculs, on prendra des arrondis d'ordre 6).

3) Donner une estimation de la concentration de la solution correspondant à une conductivité molaire de 14.8×10^{-3} mol^{-1}/m^3 . (1pt)

Exercice 2: (4 points)

Le plan complexe est muni d'un repère orthonormé usuel $(0, \overline{e_1}, \overline{e_2})$. A et B sont des points d'affixes $z_A = 2i$ et $z_B = 4 + 2i$

1) Faire une figure avec les points O, A, B = F et D tels que $\overrightarrow{OA} = \overrightarrow{BD}$ et F milieu de AB. On précisera les coordonnées du point D. (1,25pt)

Soit (Σ) le lieu des points M du plan situés à égale distance de F et de l'axe des abscisses.

Préciser la nature de (Σ) .

Déterminer graphiquement trois points de (Σ) à coordonnées entières et construire (Σ) sur la figure précédente. (1,5pt)

3) Résoudre dans \mathbb{C} l'équation $z^2 - (4+4i)z + (2i)(4+2i) = 0$. (1,25pt)

Problème: (11 points)

Partie A: (4 points)

Déterminer la solution f de l'équation différentielle y' = yln(0,6) dont la courbe (\mathcal{C}_f) dans un repère passe par le point de coordonnées $\binom{1}{0,6}$.

2) Résoudre dans IR, l'inéquation $(0,6)^x < 10^{-3}$. (0,5pt)

3) Un fabriquant de plaques isolantes phoniques indique que la pose d'une couche de ses plaques absorbe 40 % de l'intensité du son exprimée en décibels(db).

Soit I_0 l'intensité initiale non nulle du son émis dans une salle par une source et I_n l'intensité sonore dans la salle voisine après la pose de n couches de ces plaques. n étant un entier naturel non nul.

 a) Déterminer I₁ en fonction de I₀. b) Démontrer que I_n = 0,6 I_{n-1} et en déduire une expression de I_n en fonction de I₀. c) À partir de combien de couches de ces plaques posées, est-on sûr que sonore dans la salle voisine est inférieure au millième de l'intensité sonore initial (Noter que I₀ est strictement positif). 	e l'intensité
Partie B: (7points) Soit g une fonction de IR vers IR avec $g(x) = -x \ln(0.6) + (0.6)^x$. 1) Démontrer que pour x appartenant à IR , on a $g'(x) = \ln(0.6)[-1 + e^{x \ln(0.6)}]$	(0,5pt)
2) a) Démontrer que $\lim_{x\to -\infty} g(x) = +\infty$. b) Déterminer la limite de g en $+\infty$.	(0,25pt) (0,25pt)
- La variations de a	(1pt)
3) Dresser le table au de variations de g .	
4) Calculer $\lim_{x \to +\infty} [g(x) + x \ln(0,6)]$ et $\lim_{x \to -\infty} \frac{g(x)}{x}$.	(1pt)
Conclure 5) Tracer avec soin la courbe (\mathcal{C}_g) de g dans un repère orthonormé	$(0; \vec{t}, \vec{j})$. On (1.5pt)
	t les droites
Calcular l'aire A en cm² de la portion du plan deminios par (-g)	(1pt)
d'équations $y = -x\ln(0.6)$; $x = 0$ et $x = 2$.	a permis de
attack and of a get le nompre () alliness après la croamer.	se, alors som
constater que si x est le nombre de millions de francs) est $h(x) = g(x-2)$. capital (en dizaines de millions de francs) est $h(x) = g(x-2)$.	ante que sur
a) Dresser le tableau de variation de n	(0,75pt)
l'intervalle [2; +∞[). b) Donner le capital initial de cette entreprise (a 5 francs près) et indiquer récession où le capital n'a cessé de baisser.	la période de (0,75pt)
(fg8,1)	