REPUBLIQUE DU CAMEROUN Paix - Travail - Patrie

MINESEC / OBC

BREVET DE TECHNICIEN

Series

Installation Sanitaire

: Session

2018

Durée

5H

05

Coefficient:

Epreuve : ECRITE

MECANIQUE DES FLUIDES

DOCUMENTS AUTORISES:

Aucun document n'est autorisé en dehors de ceux remis aux candidats par l'examinateur Avant de commencer à traiter cette épreuve vérifié qu'elle comporte les pages1/4 à 4/4 et l'annexe 1 qui sera à remise à l'examinateur.

NB : dans tout le sujet, prendre g =9.81 m.s-2 et peau=1000 kg/m3

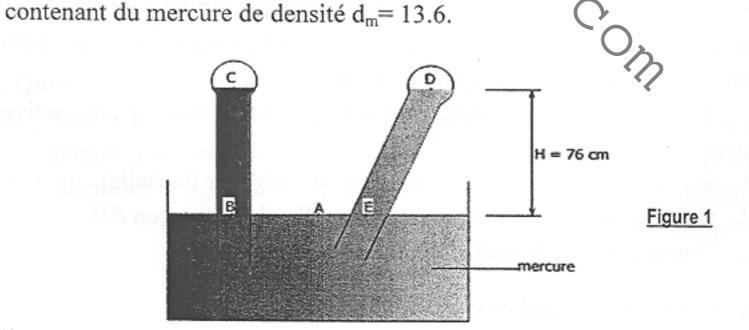
PARTIE I : GENERALITE SUR LES FLUIDES

(2.5 pts)

I.1. Définir les termes et expressions mots suivants :

 $(0.25 \times 4 = 1 \text{ pt})$

- a) Fluide
- b) Viscosité (
- c) Ecoulement permanent
- d) Nombre de Reynolds
- I.2. Quelle est l'influence de la température sur la viscosité d'un fluide ? (0.5pt)
- I.3. Déterminer le poids volumique (φ) de l'essence, puis calculer son poids(P₀) pour un volume V = 4 litres. On donne : densité de l'essence =0.7


 $(0.5 \times 2 = 1 \text{pt})$

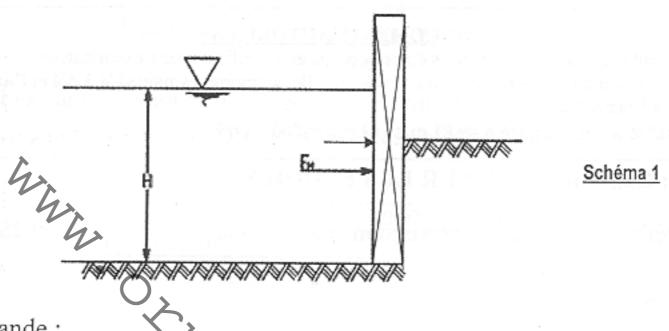
PARTIE II: STATIQUE DES FLUIDES

4 pts)

Pression atmosphérique

1,5 pt Soit la figure 1 suivante, composée de tubes plongés dans un récipient

II.1.1. Ecrire la relation fondamentale de l'hydrostatique entre les points B et C.


(0.5pt)

II.1.2. Calculer la pression exercée en A puis déduire la valeur numérique de la pression atmosphérique. (1pt)

II.2. Force hydrostatique

2,5 pts

Le schéma 1 suivant représente un barrage classique, réalisé à partir d'un mur en béton armé. La surface du mur retenant le fluide à la forme rectangulaire de 20×5 m; la hauteur de l'eau retenue est H = 3.4 m.

On vous demande:

II.2.1. Calculer la pression au centre de gravité de la surface. (1pt)

II.2.2. Calculer la force hydrostatique F_H exercée sur la paroi du barrage (0.5pt)

II.2.3. Calculer le moment de la force F_H par rapport au centre de pression à l'aide du moment d'inertie I_G et le poids volumique de l'eau (0.5pt)

II.2.4. Calculer le bras de levier (distance entre le centre de gravité et le centre de pression) (0.5pt)

PARTIE III: ECOULEMENT DES FLUIDES

(8pts)

III.1. Ecoulement en charge

(3pts)

Un pipeline transporte de l'huile de densité relative d_h= 0.87. Le pipeline change de section (de manière croissante) de 250 mm de diamètre au point A à 500 mm à la position B qui est à 4.00 m à un niveau plus élevé.

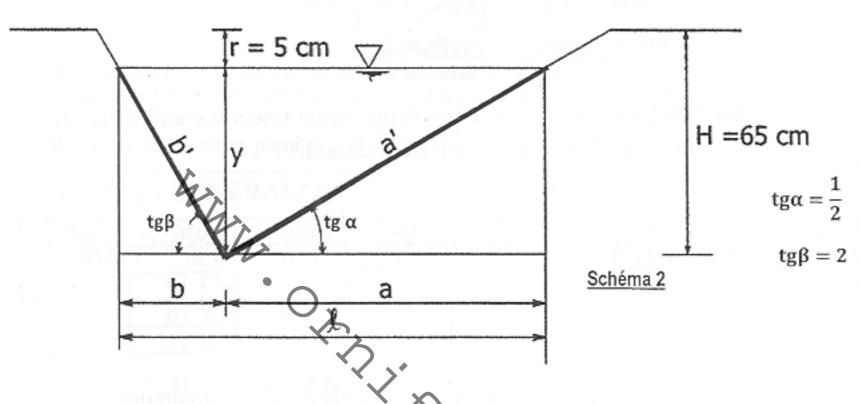
Si les pressions aux points A et B sont 100 Kpa et 60Kpa respectivement et le débit traversant ces sections, Q=200 l/s :

III.1.1. Schématiser le problème avec cotation. (négliger l'échelle). (0.5pt)

III.1.2. Calculer les pertes de charges totales HL_T de ce tronçon AB. (2pts)

III.1.3. Quelle est donc le sens d'écoulement du fluide ? (0.5pt)

III.2. Ecoulement à ciel ouvert


(5pts)

Soit le schéma 2 suivant, représentant la section d'une rigole en bordure d'une chaussée, servant à canaliser les eaux de pluies de cette zone.

On vous demande de:

III.2.1. Exprimer en fonction de y, les paramètres suivants : $(0.5 \times 4 = 2 \text{pts})$

III.2.1.1. III.2.1.2. La section mouillée de la rigole S_m III.2.1.3. Le périmètre mouillé P_m III.2.1.4. Le rayon hydraulique Rh

Calculer alors ces paramètres. III.2.2. (1pt)

III.2.3. Déterminer le débit Q_c de la rigole, selon Manning Strickler. (1pt)

Rappel $Q_c = \frac{1}{n} Rh^{2/3} i^{1/2} S$ (selon Manning Strickler) avec n = 0.03 et $i = 3^{\circ}/_{00}$

calculer la vitesse d'écoulement v de l'eau dans la rigole, puis déduire son régime d'écoulement à partir du nombre de Foudre (F). (1pt) g =accelération de pesanteur Rappel $F = \frac{v}{\sqrt{gy}}$ où y = tirant d eau

PARTIE IV: LES POMPES

(5.5 pts)

IV.1. Questions:

IV.1.1. Quelle différence faites-vous entre une pompe à action positive et une pompe à action négative ? (0.5pt)

IV.1.2. Identifier la figure 2 et décrire en quelques lignes son fonctionnement. (1.5pts)

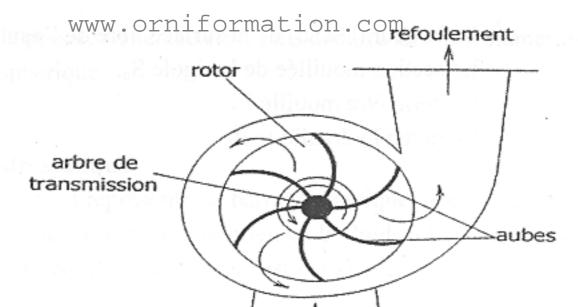


Figure 2

IV.2. Les caractéristiques d'une pompe centrifuge ayant une vitesse de rotation constante sont indiquées dans le tableau ci-dessous :

Figure 2

aspiration

$Q (m^3/s)$	0.00	0.012	0.018	0.024	0.030	0.036	0.042
H(m)	22.60	21.30	19.40	16.20	11.60	6.50	0.60
$H_f(m)$		RATE OF SE				- 4	
H _g (m)),					
H _t (m)		K.					

La pompe est utilisée pour alimenter un réservoir situé à 6.50 m (hauteurs statiques de refoulement) à l'aide d'un tuyau de diamètre de 100 mm et la longueur totale du tuyau est 6.50 m. le coefficient de frottement dans le tuyau est f=0.05. La courbe caractéristique de résistance dans la caralisation est donnée par l'expression $H_t = H_g + H_f$ où H_g est la hauteur statique de refoulement et H_f est la perte de charge par frottement, donnée par l'expression $H_f=2600Q$. (Les pertes de charges locales sont négligeables).

IV.2.1. Sur papier millimétré, tracer les courbes caractéristiques de la pompe H=f(Q) et $H_t=f(Q)$. trouver le point de fonctionnement stable. On donne :

- Hauteur (H et H_t): 1mm = 0.5 m

(2.pts)

- Debit (Q): 1 mm = 0.40 l/s

NB: reproduire le tableau 1 sur sa feuille de composition et le compléter

- IV.2.2. Déterminer la puissance hydraulique de la pompe au point de fonctionnement. (0.5.pt)
- IV.2.3. Quelle est la puissance mécanique de la pompe si son rendement est de 60% ? (0.5.pt)
- IV.2.4. Si on veut augmenter le débit d'eau au niveau du réservoir, doit on coupler la pompe d'une seconde en parallèle ou en série ? Justifier votre réponse.
 (0.25×2=0.5.pt)