www.orniformation.com

MINISTERE DES ENSEIGNEMENTS SECONDAIRES Office du Baccalauréat du Cameroun

Session: 2018 Examen: BT IND Série/Spécialité: MA, MF/CM, MEB, IB GT-BIJO EF, MEM, MHB, MISE

Epreuve: Mathématiques

Durée: 3 heures

Coefficient: 3

L'épreuve comporte deux exercices et un problème répartis sur deux pages.

EXERCICE 1: (5 points) Le plan complexe est rapporté à un repère orthonormé $(0; \vec{u}; \vec{v})$ direct d'unités graphiques 1 cm. **1.** Résoudre dans $\mathbb C$ l'équation : $z^2 - 4i\sqrt{3}z - 16 = 0$. 2. On considère les points P et Q d'affixes respectives $p=2+2i\sqrt{3}$ et $q = -2 + 2i\sqrt{3}.$ a) Ecrire chacen des nombres p et q sous la forme trigonométrique. b) Ecrire le nombre $\frac{q}{r}$ sous la forme exponentielle et en déduire la nature du

1pt triangle OPQ.

3. On désigne par f la transformation qui à tout point M d'affixe Z associe le point M'

d'affixe z' telle que $z' = e^{\frac{1}{3}}z$. 0,5pt a) Déterminer l'affixe de R, image du point P par f. b) Montrer que f admet un unique point invariant dont on précisera l'affixe. 0,75pt

4. Représenter les points P et R dans le repère $(0; \vec{u}; \vec{v})$.

0,75pt

1pt

1pt

EXERCICE 2: (4 points)

Au 1er janvier de l'année 2014, une société de transport de marchandises opérant dans la zone CEMAC dispose d'un stock de 1500 % de carburant. D'après les résultats d'une étude, 10 % du stock du carburant est utilisé au cours de chaque année. Pour ajuster son stock à ses besoins, la société achète $100 \ m^3$ de carburant le 1^{er} janvier de chaque année suivante. Pour tout entier nature n on désigne par u_n le stock (en m^3) du carburant de la société au 1 $^{
m er}$ janvier de l'ann $\stackrel{
m ee}{
m eo}$ 2014+n après l'achat de 100 m^3 de carburant ($n \in IN^*$). On donne $u_0 = 1500$.

0,5pt 1. Calculer u_1 et u_2 .

0,75pt **2.** Montrer que $u_{n+1} = 0.9u_n + 100$.

3. Pour tout entier nature n, on pose $v_n = u_n - 1000$.

0,5pt a) Calculer v_0 et v_1 .

0,75pt b) Montrer que (v_n) est une suite géométrique. 0,5pt c) Exprimer v_n en fonction n. 0,5pt

d) En déduire que $u_n = 500 \times (0.9)^n + 1000$.

4. Calculer le stock (en m^3) de carburant de cette société au $1^{\rm er}$ janvier de l'année 2022après l'achat de 100 m^3 de carburant. (Donner l'arrondi du résultat à l'entier près). 0,5pt

PROBLEME: (11 points)

Partie A: (2,5 points)

On considère la fonction g définie sur IR par $g(x) = 2e^x + 2x + 4$.

1. Calculer les limites de g en $-\infty$ et en $+\infty$.

0,5pt

2. Etudier les variations de g sur IR.

1pt

3. Montrer que l'équation g(x) = 0 admet une unique solution α appartenant à l'intervalle]-2,2; -2,1[.

0,5pt

4. En déduire le signe de g(x) sur $]-\infty$; α [et sur $]\alpha$; $+\infty$ [.

0,5pt

Partie B: (8,5 points)

Le plan est muni d'un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$ d'unités graphiques 2 cm.

On considère la fonction h définie de IR vers IR par $h(x) = \frac{(x+1)e^x}{e^x+1}$, (C_h) la courbe représentative de h dans le repère $(0, \vec{\imath}, \vec{\jmath})$.

1. Vérifier que $h(x) = \frac{e^x g(x)}{2(e^x + 1)^2}$ pour tout x appartenant à IR et en déduire les variations de h sur son ensemble de définition.

2. Montrer que $h(\alpha) = \alpha + 2$ et en déduire un encadrement de $h(\alpha)$.

1pt

3. Déterminer une équation de la tangente (T) à la courbe (C_h) en son point d'abscisse 0.

0,5pt

4. Calculer la limite de h en $-\infty$ et donner une interprétation géométrique du résultat.

0,75pt

5. Calculer la limite de h en $+\infty$ puis montrer que la droite (D) d'équation y=x+1 est asymptote oblique à (C_h) en $+\infty$.

6. Etudier la position relative de (C_h) par rapport à son asymptote oblique (D). 0,75pt

7. Reproduire et compléter le tableau suivant (arrondir les résultats au dixième près). 1pt

x	-2	-1	.6		1
h(x)	•		1	9	

8. Tracer la courbe (C_h) , la tangente (T) et l'asymptote (D).

2pts