Evamon			EAT DU CAMEROL		0042
Examen Épreuve	Baccalauréat Sciences physiques	Spécialité Durée	F ₂ -F ₃ -F ₅ 3 heures	Session	2018
	- Colonoco priyolegoco	Daloo	Officares	Coefficient	, J
CHIMIE / 6 Po	oints .x) Clxle produit principal d'une	ráaction átudián o	n sloce		
			ii classe.		0,5pt
1.1. Écrire la formule brute de l'hydrocarbure utilisé. 1.2. S'agit-il d'une réaction de substitution ou d'addition 2. Justifier votre réponse.					
1.2. S'agit-il d'une réaction de substitution ou d'addition ? Justifier votre réponse.1-3. Pour x=1, écrire l'équation-bilan de la réaction.					0,5pt
	on de l'acétylène (éthyne).	acuon.			0,5pt
sudovina.	. I consists a	l'ogu cur l'áthung í	(C.H.) of nammar la	araduit ahtanu	4-4
	quation-bilan de la réaction de				1pt
la réaction va	le V ₁ = 100 L d'éthyne gazeux,	determiner la mas	se ili du produit si le	rendement de	0.75-4
		(42 m/m o I) + O (4C	ntmath a U. M. ntmath		0,75pt
	/ ₀ =24 L (vojume molaire); C (
	e d'un <u>ester</u> É conduit à <u>l'éthan</u>		olque B.	Surface and Course	0,25pt
3.1. Donner le nom de la <u>réaction concurrente</u> de l'hydrolyse.					
 3.2. Écrire la formule semi-développée de l'ester E. 4. On dose un acide carboxylique de formule R – COOH et de masse m = 0,237 g par une solution de 					
	HOr) de concentration C _b = 0,2	movit. Au point eq	uivalent, on a verse e	exactement un volume	2
V _{bE} = 0,016 L		X	, m * ii. * .		0,5pt
 4.1. Déterminer la masse moléculaire molaire M de cét acide carboxylique. 4.2. En déduire la formule brute de cet acide carboxylique à chaîne carbonée saturée. 					
		carboxylique a ch	aîne carbonée satur	ee.	0,5pt
5. Les engrai			2		
	- 20, la formule d'un engrais co	•	m _E = 50kg.		0,25pt
5.1. L'engrais en question est-il ternaire ou binaire ?					
	er la masse m _N de l'élément fe	rtilisant azote.	, C),	0,75pt
	E / 14 points			Q	
	N DIRECTE DU COURS : 4 P				
	premier principe de la thermo				d'un système qui ce
	Q = 2 500 J au milieu extérieur,	en recevant un tra	avail W = 3 500 J des	forces extérieures.	1pt
	CIRCUIT (R.C)			•	• A
	R,C) est alimenté par une tens		16 V.		A Profesional SECT.
2.1. Détermin	0,5pt				
	re la tension électrique de ce c		stant t ₁ = 30 s.		0,5pt
	<u>ne</u> : $R = 6000 \Omega$; $C = 5.10^{-3} F$.				
MOUVEMENT	TS VIBRATOIRES				
3. L'équation l	horaire d'un pendule élastique	qui travaille en tra	nslation rectiligne sin	usoïdale est :	
$x = 2.10^{-3}$	$\sin(5.t + 1,57)$ où x (en mè	tre) et f (en second	le).		
3.1. Donner l'e	expression de son équation dif	férentielle.			1pt
					lesses.
O.B.C Bacca	alauréat F2-F3-F5 ; Épre	uve de Science	es physiques	Page 1 sur 2	

3.2. Le solide ponctuel relié à ce ressort a une masse m = 0,1 kg. Déterminer la constante de raideur K de ce ressort et l'accélération \ddot{x}_0 du système à l'instant initial $t_0 = 0$ s.

1pt

UTILISATION DES ACQUIS : 5 Points

1. Le système (S₁, poulie, S₂, fil) est en mouvement uniformément accéléré sous l'action du solide S₂,(voir figure 1). La poulie est de masse négligeable.

Données: S1 est un solide de masse m1 = 20 g; S2 est un solide de masse m2 = 70 g; Sinq = 0,5 et g = 10 N/kg; l'accélération a₁ de S₁ est égale à l'accélération a₂ de S₂.

1.1. En s'appuyant sur le sens du mouvement des solides, donner:

1.1.1. L'expression de la tension ?	en fonction de m ₁ , g, sina et a	(accélération du système);
-------------------------------------	--	----------------------------

0,5pt

1.1.2. L'expression de la tension T2 en fonction de m2, g, sina et a1;

0,5pt

1.2. Déduire l'accélération a₁ de l'égalité T₁ = T₂ = T'₂ et la calculer.

0,5pt

ONDES PROGRESSIVES

- 2. L'extrémité S (source) d'une lame vibrante, reliée à une corde, est animée d'un mouvement transversal rectiligne sinusoïdal d'élongation $Y_s = 5.16$ (200 π .t) avec t (en seconde) et Y_s (en mètre).
- 2.1. Cette corde de masse dinéique $\mu=0.2~kg/m$ est tendue par une force d'intensité.

F = 20 N. Déterminer la longueur d'onde λ de l'onde progressive.

0,5pt

2.2. L'onde traverse deux points M et N de la corde, distants d =0,25 m. Comparer l'état vibratoire

de M et N.

0,5pt

EFFET PHOTOELECTRIQUE

- La longueur d'onde seuil d'un métal est λ₀ = 0.7.10-6 m.
- 3.1. Calculer l'énergie d'extraction Eo d'un photoélectron.

0,5pt

3.2. Un faisceau incident de puissance P = 15.10-4W et de longueur d'onde λ = 0,45.10-6 m extrait 4,5. 1013 électrons par seconde. Déterminer le rendement quantique de la cellule

1pt

1pt

On donne: $c = 3.10^8 \text{ m/s}$; $h = 6.63.10^{-34} \text{ J.s.}$

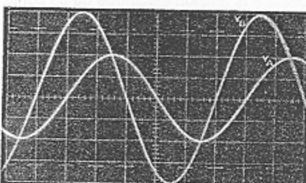
MOUVEMENT D'UNE PARTICULE DANS UN CHAMP MAGNETIQUE

4. Un champ magnétique uniforme \vec{B} agit sur un électron de vitesse constante $V_0 = 2.10^7$ m/s. Le mouvement engendré de l'électron est circulaire dans un plan horizontal. Déterminer le rayon R de la trajectoire. 1pt

On donne: $m_{\bar{e}} = 9,1.10^{-31} \text{ kg} |e| = q = 1,6.10^{-19} \text{ C, } B = 6.10^{-5} \text{ T}$

EXERCICE A CARACTERE EXPERIMENTAL: 5 points

On vous propose le circuit électrique et l'oscillogramme associé ci-dessous


Donner un nom à ce circuit et justifier la présence de deux courbes.

1pt 1pt

- Quelle tension représente les sorties Y_A et Y_B. 3. À partir de l'oscillogramme, déterminer :
- 3.1. La tension maximale aux bornes du condensateur et aux bornes du générateur si 1cm → 1V.

1pt 3.2. La période T et la différence de phase Δφ entre les deux tensions si 1 cm → 10-3 s. 1pt

3.3. En déduire la différence de phase entre le courant i et la tension u aux bornes de l'ensemble.

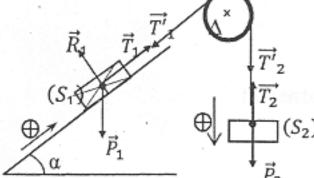
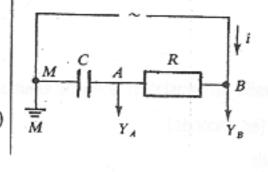



Figure 1

